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ABSTRACT: 

The consulting statistician frequently encoun- 
ters problems in which an initial score (pre- 
test) and a final score (post -test) are observed. 
This paper contrasts three regression models 
which use the final score and change score 
(final score minus initial score) as dependent 
variables. It has been noted that for most 
problems the initial score should be used as an 
independent variable or covariate. When the 
two regression models which have the same 
independent variables but different dependent 
variables are contrasted, the models differ only 
in their multiple correlation coefficients but 
the standard error of estimate and other impor- 
tant statistics are the same. Tests of hypo- 
theses conditional on the initial score are also 
the sacre for both models. An example is given 
and related topics encountered in the behavioral 
and animal sciences are discussed. 

INTRODUCTION: 

The problem is to see the mathematical relation- 
ships between three regression models with a 
view toward choosing the most appropriate model. 
Measurements on some variable are taken before 
(initial score) and after (final score) treat- 
ment. Treatment can be either quantitative 
(a regression problem) or qualitative (an ANOVA/ 
ANCOVA problem). The mathematical aspects will 
be displayed in the more general context of a 
regression model but the results also apply to 
the more popular (special case) ANCOVA model. 
In the context of psychometrics, say, the prob- 
lem can be viewed as the regression analogue of 
the pre- intervention -post design: 

Pre- intervention -Post Design 

Control 

Treatment 

Pre Post 

Question researcher asks is: Is there more 
change in the treatment group than in the control 
group? 

Statistical hypothesis: Test for equality of 
gains for the two or more groups. 

Assumptions: At this point, we assume that all 
classical assumptions are satisfied, including 
random assignment to treatment groups. 

DEFINITIONS: 

IS initial score 
FS final score 
G FS -IS = gain score 
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R2 coefficient of determination 
= square of the multiple correlation 
coefficient 

s = standard error of estimate 
= square root of the estimated variance 

about the regression line 
RSS = residual sum of squares 
edf degrees of freedom for RSS 

PROBLEM: 

Which of the three regression models do we choose 
and what differences are there in the regression 
statistics, R2 and 

Model Dependent Variable Independent Variables 

G 

FS 

G = FS-IS 

G FS-IS 

IS + 

IS + x2 

x2 only 

MODEL EXAMPLE: 

For the G model, let x2 represent the independent 

variables excluding IS. Then, for example, x2 

could represent age and a treatment variable, trt. 
The G model could then be represented by the 
equation 

G + ß1 x IS + B2 x Age + trt. 

We may be interested in predicting gain or we may 
be interested in seeing how treatment affects 
gain after adjustment for IS and age. 

MODEL PREFERENCE: 

Choose either the FS or G model since is the 

same for both models. R2 is generally different. 
The IS model is usually inadequate since IS is 
frequently related to G or FS. 

THEOREM: 

The residuals, RSS and the same for the 
FS and G models. 

IDEA OF PROOF: 

Var (FS -ISIS) = Var (FSIIS) 

That is, the variance about the population regres- 
sion line is the same for the FS and G models 
since both have the same independent variables 
and both vary the same at each value of IS. To 
illustrate, consider the (IS, FS) data (1, 2), 
(1, 3), (1, 4), (2, 3), (2, 4), (2, 5) consisting 



of three FS values at each of the two values of 
IS. A plot of IS versus FS and a separate plot 
of IS versus G indicate that s is equal to 

x 
one for both plots whereas R2 = .273 for the 
(IS, FS) data and R2 = 0 for the (IS, G) data. 

PROOF: 

Basic idea is to show that the regression . 

coefficients for x2 the same for both models 

and that the regression coefficient for IS 
satisfies the condition b 1 + g (This has been 
noted by Werts and Linn, 1970). Without loss 
of generality, let x2 consist of one independent 
variable x2. Then 

RSS min E(FS - b0 - b1 x IS - b2x2)2 

for FS model and 

RSS = min E(FS - IS - g0 - gl x IS - g2x2)2 

= min E(FS - g0 - (1 + gl) x IS - g2x2)2 

for G model. Assuming there are no singularity 
problems, the Gauss - Markov theorem says that the 
least squares estimates of the regression 
coefficients are unique so, 

b0 = g0 

b1=1 +g1 

b2 =g2 

from which it follows that the residuals, 
FS - b0 - b1 x IS - b2x2, are the same for the 

FS and G models. 

Hence, RSS and 

s = (RSS /edf)1 
/2 

y.x 

are also the same since edf n - #parameters 
estimated is the same for both models. 

EXAMPLE FROM PSYCHOLOGY (Mental Retardation): 

Score = Adaptive Behavior (AB) 
IS = initial score, AB at 1 

FS = final score, AB at time 2 

= vector of independent variables, e.g., 
IQ, age, treatment environmental 
factor score. 

See Table 1. Note the following: 

a) .88 = -.12 + 1.0 since b1 = + 1 

b) the standard errors are the same for 
the FS and G models. 

c) the t values are the same (except for 

IS); for x23, t = 5.83; so a test for 
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significance of the partial regression 
coefficient of trt after adjustment for 
IS, age, etc. is highly significant. 

d) is the same for the FS and G models. 

e) R2 is different; R2 is usually higher 
for the FS model since the variance of 
FS is higher than the variance of G 
whenever IS and G are positively 
correlated - as is usually the case. 

Note: In general, it can be shown that tests of 
hypotheses conditional on IS are the same for the 
FS and G models. To see this, let H0: ßq = 0 

where ßq is a vector of regression coefficients 

which does not include IS. Then the F test can 
be written as 

F = (RSS' RSS) edf/RSS (edf' - edf) 

where RSS' and edf' denote the RSS and edf under 
the null hypothesis. Since IS is "included" in 

and RSS' and edf and edf' are the same for 
both the FS and G models, it follows that tests 
of hypothesis, H0: ßq = 0, are identical for 

both the FS and G models. 

EXAMPLE FROM ANIMAL SCIENCE: 

IW = initial weight of steer 
= final weight of steer 

G = FW -IW = gain in weight 
x2 = treatment coded as 1, 2, 3, 4, which 

is simply a ranking of the amount of 
concentrate in the diet. For ANCOVA 
and ANOVA of gain scores, x2 is used 

as a qualitative grouping variable. 

Table 2 shows the results for comparing ANOVA of 
Gain, repeated measures (RM) ANOVA, ANCOVA with 

and G as the dependent variables and multiple 
regression using the treatment variable as a 
quantitative (1, 2, 3, 4) variable. Note that 
the ANOVA of Gain and the time by treatment 
interaction in the RM ANOVA test the same hypo- 
thesis (that the gain is the same for each treat- 
ment) so that the F value is the same as that in 
the ANOVA of Gain. In comparing the ANCOVA models, 
the same results are true for the ANCOVA models as 
are true for the regression models, i.e., that 
s is the same, R is generally different, and 

x 
that the regression coefficient for is one more 
for the FW model than for the G model. 

When all the assumptions are met including random 
assignment to treatment groups and the covariate 
and independent variables are measured without 
error, it has been established (Bock, 1975) that 
ANCOVA is more powerful than ANOVA of Gain scores 
(and repeated measures since the same F value is 
obtained when testing the treatment by time inter- 
action in a repeated measures ANOVA). 



DIFFICULTIES INVOLVED WHEN ASSUMPTIONS ARE 
VIOLATED: 

The educational, psychological, and sociological 
literature contain many papers discussing the 
use of gain scores and ANCOVA when the assump- 
tions are not met. The paper by Cronbach and 
Furby entitled, "How should we measure "change" 
or should we ?" is a classic and Lord's Paradox 
(Lord and Novick, 1968; Bock, 1975) is also a 
controversial paper. In short, it is felt that 
there is some agreement that ANCOVA can be used 
with caution when there are intact groups (no 
random assignment to treatment). See Elashoff 
(1969), Kenny (1975), and Alwin and Sullivan 
(1975). Also, when the covariate is measured 
with error, there is a general agreement that 
some form of adjustment should be made, but as 
Cochran (1968) discusses, this could depend on 
the assumed model (Is there a linear regression 
of FS on "true" IS or on IS measured with error ?). 
Werts and Linn (1970) and Bergman (1971) discuss 
alternative models to use when dealing with 
change. The problems with some of these models 
is that they require an estimate of the relia- 
bility of the covariate and /or independent 
variable. The reliability, R, is defined as the 
ratio of the variance of the true value to the 
variance of the observed value. To be specific, 
let X x + e, where X is the observed score, 
x is the true score, and e is the error of 
measurement. Assuming that x and e are indepen- 
dent, it follows that 

CONCLUSION: 

Use either the FS or G models, but there is 
some controversy and some unanswered problems 
when the assumptions are violated. 
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Table 1. 
An Example From Comparing the Three Regression Models 

Coefficient Standard Error t -value 

Model: FS G FS G FS G 

IS .88 -.12 - .062 .062 - 14.20 -2.02 - 

21 
-.10 -.10 -.14 .057 .057 .053 -1.74 -1.71+ -2.64 

x22 -1.05 -1.05 -.56 .640 .640 .602 -1.64 -1.64 -.93 

x23 1.57 1.57 1.23 .269 .269 .211 5.83 5.83 5.82 

x24 1.22 1.22 1.07 .460 .460 .457 2.65 2.65 2.34 

x25 -2.33 -2.33 -2.328 1.189 1.189 1.200 -1.96 -1.96 -1.94 

Model: R s edf SS(TOTAL) RSS F for testing R 
x 

FS .932 11.16 205 193078 25523 225.9 

G .528 11.16 205 35374 25523 13.2 

IS .514 11.24 206 35374 26032 14.8 

Table 2. 

Comparison of Alternative Models for 
Assessing Differences in Treatment Gains for Angus Steers 

Model edf R2 bIW, tb bt, 

ANOVA of Gain 28 .71 55.39 - - 22.4 

ANOVA 28 - - - - 22.4 

ANCOVA [G] 27 .72 55.40 .18, .18, 1.0 - 21.1 

ANCOVA [FW] 27 .82 55.40 1.18, .18, 6.4 - 21.1 

REGR [G] 29 .52 69.28 .28, .22, 1.3 -59, 11, -5.4 28.7 

REGR [FW] 29 .70 69.28 1.28, .22, 5.8 -59, 11, -5.4 28.7 

three numbers, represent the regression coefficient for IW, the standard error and 

the t value. 

°The three numbers, bt, t, represent the regression coefficient for the treatment variable, the 

standard error, and the t value. 

value of F given in the table represents the F value associated with the main (treatment) hypo- 

thesis of interest. For the ANOVA of Gain, the hypothesis is the equality of mean treatment gains; 

for the RM ANOVA, it is the time by treatment interaction; for the ANCOVA models, it is the equality 
of the adjusted treatment means; for the regression models, the hypothesis is testing for significance 

of the treatment partial regression coefficient. 
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